
Public

SMART CONTRACT AUDIT REPORT

for

eEURO Token Contract

Prepared By: Xiaomi Huang

PeckShield
July 27, 2022

1/17 PeckShield Audit Report #: 2022-286

contact@peckshield.com

Public

Document Properties

Client eEURO Token
Title Smart Contract Audit Report
Target eEURO Token
Version 1.0
Author Jing Wang
Auditors Jing Wang, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author Description
1.0 July 27, 2022 Jing Wang Final Release

1.0-rc July 26, 2022 Jing Wang Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/17 PeckShield Audit Report #: 2022-286

Public

Contents

1 Introduction 4
1.1 About eEURO Token . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 8
2.1 Summary . 8
2.2 Key Findings . 9

3 ERC20/BEP20 Compliance Checks 10

4 Detailed Results 13
4.1 Trust Issue Of Admin Keys . 13
4.2 Removal of Redundant State/Code . 14

5 Conclusion 16

References 17

3/17 PeckShield Audit Report #: 2022-286

Public

1 | Introduction

Given the opportunity to review the design document and related source code of the eEURO token
contract, we outline in the report our systematic method to evaluate potential security issues in the
smart contract implementation, expose possible semantic inconsistency between smart contract code
and the documentation, and provide additional suggestions or recommendations for improvement.
Our results show that the given version of the smart contract can be further improved due to the
presence of certain issues related to either security or performance. This document outlines our audit
results.

1.1 About eEURO Token

eEURO is a regulated, EURO nominated and fully reserved stablecoin and digital euro - a digital asset
that is fully backed and always redeemable 1:1 to FIAT. eEURO is a native ERC-20 token released
in Ethereum L1. eEURO provides reliable, euro-nominated access to DeFi markets and operates as a
medium between traditional and crypto financial markets.

Table 1.1: Basic Information Of eEURO Token

Item Description
Name eEURO Token
Type ERC20 Token Contract

Platform Solidity
Audit Method Whitebox

Audit Completion Date July 27, 2022

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit:

• https://github.com/membranefi/euro-stablecoin.git (b011a0d)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

4/17 PeckShield Audit Report #: 2022-286

Public

• https://github.com/membranefi/euro-stablecoin.git (02bb9c7)

1.2 About PeckShield

PeckShield Inc. [6] is a leading blockchain security company with the goal of elevating the security,
privacy, and usability of current blockchain ecosystem by offering top-notch, industry-leading ser-
vices and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [5]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk;

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

We perform the audit according to the following procedures:

5/17 PeckShield Audit Report #: 2022-286

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• ERC20 Compliance Checks: We then manually check whether the implementation logic of the
audited smart contract(s) follows the standard ERC20 specification and other best practices.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead of Transfer

Costly Loop
(Unsafe) Use of Untrusted Libraries
(Unsafe) Use of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Approve / TransferFrom Race Condition

ERC20 Compliance Checks Compliance Checks (Section 3)

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

To evaluate the risk, we go through a list of check items and each would be labeled with a severity
category. For one check item, if our tool does not identify any issue, the contract is considered safe

6/17 PeckShield Audit Report #: 2022-286

Public

regarding the check item. For any discovered issue, we might further deploy contracts on our private
testnet and run tests to confirm the findings. If necessary, we would additionally build a PoC to
demonstrate the possibility of exploitation. The concrete list of check items is shown in Table 1.3.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/17 PeckShield Audit Report #: 2022-286

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the eEURO token contract. During the first phase of
our audit, we study the smart contract source code and run our in-house static code analyzer through
the codebase. The purpose here is to statically identify known coding bugs, and then manually verify
(reject or confirm) issues reported by our tool. We further manually review business logics, examine
system operations, and place ERC20-related aspects under scrutiny to uncover possible pitfalls and/or
bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 0

Informational 1

Total 2

Moreover, we explicitly evaluate whether the given contracts follow the standard ERC20 specifi-
cation and other known best practices, and validate its compatibility with other similar ERC20 tokens
and current DeFi protocols. The detailed ERC20 compliance checks are reported in Section 3. After
that, we examine a few identified issues of varying severities that need to be brought up and paid
more attention to. (The findings are categorized in the above table.) Additional information can be
found in the next subsection, and the detailed discussions are in Section 4.

8/17 PeckShield Audit Report #: 2022-286

Public

2.2 Key Findings

Overall, no ERC20 compliance issue was found, and our detailed checklist can be found in Section 3.
Also, though current smart contracts are well-designed and engineered, the implementation and
deployment can be further improved by resolving the identified issues (shown in Table 2.1), including
1 medium-severity vulnerability and 1 informational recommendation.

Table 2.1: Key eEURO Token Audit Findings

ID Severity Title Category Status
PVE-001 Medium Trust Issue Of Admin Keys Security Features Confirmed
PVE-002 Informational Removal of Redundant State/Code Coding Practices Resolved

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 4
for details.

9/17 PeckShield Audit Report #: 2022-286

Public

3 | ERC20/BEP20 Compliance
Checks

The ERC20 specification defines a list of API functions (and relevant events) that each token contract
is expected to implement (and emit). The failure to meet these requirements means the token
contract cannot be considered to be ERC20-compliant. Naturally, as the first step of our audit, we
examine the list of API functions defined by the ERC20 specification and validate whether there
exist any inconsistency or incompatibility in the implementation or the inherent business logic of the
audited contract(s).

Table 3.1: Basic View-Only Functions Defined in The ERC20 Specification

Item Description Status

name() Is declared as a public view function ✓

Returns a string, for example “Tether USD” ✓

symbol() Is declared as a public view function ✓

Returns the symbol by which the token contract should be known, for
example “USDT”. It is usually 3 or 4 characters in length

✓

decimals() Is declared as a public view function ✓

Returns decimals, which refers to how divisible a token can be, from 0
(not at all divisible) to 18 (pretty much continuous) and even higher if
required

✓

totalSupply() Is declared as a public view function ✓

Returns the number of total supplied tokens, including the total minted
tokens (minus the total burned tokens) ever since the deployment

✓

balanceOf() Is declared as a public view function ✓

Anyone can query any address’ balance, as all data on the blockchain is
public

✓

allowance() Is declared as a public view function ✓

Returns the amount which the spender is still allowed to withdraw from
the owner

✓

Our analysis shows that there is no ERC20 inconsistency or incompatibility issue found in the

10/17 PeckShield Audit Report #: 2022-286

Public

Table 3.2: Key State-Changing Functions Defined in The ERC20 Specification

Item Description Status

transfer()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token transfer status ✓

Reverts if the caller does not have enough tokens to spend ✓

Allows zero amount transfers ✓

Emits Transfer() event when tokens are transferred successfully (include 0
amount transfers)

✓

Reverts while transferring to zero address ✓

transferFrom()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token transfer status ✓

Reverts if the spender does not have enough token allowances to spend ✓

Updates the spender’s token allowances when tokens are transferred suc-
cessfully

✓

Reverts if the from address does not have enough tokens to spend ✓

Allows zero amount transfers ✓

Emits Transfer() event when tokens are transferred successfully (include 0
amount transfers)

✓

Reverts while transferring from zero address ✓

Reverts while transferring to zero address ✓

approve()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token approval status ✓

Emits Approval() event when tokens are approved successfully ✓

Reverts while approving to zero address ✓

Transfer() event
Is emitted when tokens are transferred, including zero value transfers ✓

Is emitted with the from address set to address(0x0) when new tokens
are generated

✓

Approval() event Is emitted on any successful call to approve() ✓

11/17 PeckShield Audit Report #: 2022-286

Public

audited eEURO Token. In the surrounding two tables, we outline the respective list of basic view

-only functions (Table 3.1) and key state-changing functions (Table 3.2) according to the widely-
adopted ERC20 specification. In addition, we perform a further examination on certain features
that are permitted by the ERC20 specification or even further extended in follow-up refinements and
enhancements (e.g., ERC777/ERC2222), but not required for implementation. These features are
generally helpful, but may also impact or bring certain incompatibility with current DeFi protocols.
Therefore, we consider it is important to highlight them as well. This list is shown in Table 3.3.

Table 3.3: Additional Opt-in Features Examined in Our Audit

Feature Description Opt-in
Deflationary Part of the tokens are burned or transferred as fee while on trans-

fer()/transferFrom() calls
—

Rebasing The balanceOf() function returns a re-based balance instead of the actual
stored amount of tokens owned by the specific address

—

Pausable The token contract allows the owner or privileged users to pause the token
transfers and other operations

✓

Blacklistable The token contract allows the owner or privileged users to blacklist a
specific address such that token transfers and other operations related to
that address are prohibited

✓

Mintable The token contract allows the owner or privileged users to mint tokens to
a specific address

✓

Burnable The token contract allows the owner or privileged users to burn tokens of
a specific address

✓

12/17 PeckShield Audit Report #: 2022-286

Public

4 | Detailed Results

4.1 Trust Issue Of Admin Keys

• ID: PVE-001

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: eEURO

• Category: Security Features [3]

• CWE subcategory: CWE-287 [1]

Description

In the eEURO token contract, there is a privileged account, i.e., minter, which plays a critical role in
governing and regulating the token-related operations. In particular, it has the privilege to mint addi-
tional tokens into circulation. Our analysis shows that the privileged account needs to be scrutinized.
In the following, we examine the privileged minter account and its related privileged access in current
contract.

148 function mintSet(
149 address [] calldata targets ,
150 uint256 [] calldata amounts ,
151 uint256 id ,
152 bytes32 checksum
153) external whenNotPaused onlyRole(MINTER_ROLE) {
154 require(targets.length == amounts.length , "Unmatching mint lengths");
155 require(targets.length > 0, "Nothing to mint");
156
157 bytes32 calculated = keccak256(abi.encode(targets , amounts , id));
158 require(calculated == checksum , "Checksum mismatch");
159
160 for (uint256 i = 0; i < targets.length; i++) {
161 require(amounts[i] > 0, "Mint amount not greater than 0");
162 _mint(targets[i], amounts[i]);
163 }
164 emit MintingSetCompleted(id);
165 }

Listing 4.1: EUROStablecoin::mintSet()

13/17 PeckShield Audit Report #: 2022-286

Public

To elaborate, we show above the related sensitive operation that is related to minter. We
understand the need of the privileged functions for contract maintenance, but it is worrisome if
the privileged minter account is a plain EOA account. Note that a multi-sig account could greatly
alleviate this concern, though it is still far from perfect. Specifically, a better approach is to eliminate
the administration key concern by transferring the role to a community-governed DAO.

Recommendation Promptly transfer the privileges of the minter to the intended governance
contract. And activate the normal on-chain community-based governance life-cycle and ensure the
intended trustless nature and high-quality distributed governance.

Status This issue has been confirmed.

4.2 Removal of Redundant State/Code

• ID: PVE-002

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: EUROStablecoin

• Category: Coding Practices [4]

• CWE subcategory: CWE-563 [2]

Description

The eEURO token contract makes good use of a number of reference contracts, such as ERC20Upgradeable
, UUPSUpgradeable, and SafeERC20Upgradeable, to facilitate its code implementation and organization.
However, we observe the inclusion of certain unused code or the presence of unnecessary redundancies
that can be safely removed. To elaborate, we show below the code snippet of related functions.

99 function burn(uint256 amount)
100 public
101 override
102 whenNotPaused
103 onlyRole(MINTER_ROLE)
104 {
105 super.burn(amount);
106 }

Listing 4.2: EUROStablecoin::burn()

26 function burn(uint256 amount) public virtual {
27 _burn(_msgSender (), amount);
28 }

Listing 4.3: ERC20BurnableUpgradeable::burn()

14/17 PeckShield Audit Report #: 2022-286

Public

280 function _burn(address account , uint256 amount) internal virtual {
281 require(account != address (0), "ERC20: burn from the zero address");
282
283 _beforeTokenTransfer(account , address (0), amount);
284
285 uint256 accountBalance = _balances[account];
286 require(accountBalance >= amount , "ERC20: burn amount exceeds balance");
287 unchecked {
288 _balances[account] = accountBalance - amount;
289 }
290 _totalSupply -= amount;
291
292 emit Transfer(account , address (0), amount);
293
294 _afterTokenTransfer(account , address (0), amount);
295 }

Listing 4.4: ERC20::_burn()

179 function _beforeTokenTransfer(
180 address from ,
181 address to ,
182 uint256 amount
183) internal override whenNotPaused whenNotBlocked(from) whenNotBlocked(to) {
184 super._beforeTokenTransfer(from , to, amount);
185 }

Listing 4.5: EUROStablecoin::_beforeTokenTransfer()

We notice that the check of whenNotBlocked in the burn() routine (line 102) is redundant because
there is the same validity check in the _beforeTokenTransfer() function, which is called from the _burn

() routine. Note the same issue also exists on other routines, i.e., mintSet(), burnFromWithPermit(),
burnFrom().

Recommendation Remove the redundant checks on burn().

Status The issue has been fixed by the following commits: cc09ee3

15/17 PeckShield Audit Report #: 2022-286

https://github.com/membranefi/euro-stablecoin/commit/cc09ee3a1185b3af81363e09773588d3f2236f6c

Public

5 | Conclusion

In this security audit, we have examined the design and implementation of the eEURO token contract.
During our audit, we first checked all respects related to the compatibility of the ERC20 specification
and other known ERC20 pitfalls/vulnerabilities. We then proceeded to examine other areas such
as coding practices and business logics. Overall, although no critical or high level vulnerabilities
were discovered, we identified two issues of varying severities. In the meantime, as disclaimed in
Section 1.4, we appreciate any constructive feedbacks or suggestions about our findings, procedures,
audit scope, etc.

16/17 PeckShield Audit Report #: 2022-286

Public

References

[1] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[2] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[3] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[4] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[5] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[6] PeckShield. PeckShield Inc. https://www.peckshield.com.

17/17 PeckShield Audit Report #: 2022-286

https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About eEURO Token
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	ERC20/BEP20 Compliance Checks
	Detailed Results
	Trust Issue Of Admin Keys
	Removal of Redundant State/Code

	Conclusion
	References

