
Audit Report

EUROe Stablecoin
Delivered: 2022-12-23

Prepared for Membrane Finance by Runtime Verification, Inc.

Summary

Disclaimer

EUROe: Contract Description and Properties

Overview

Properties

Findings

A01: A blocked address can unblock itself

Scenario

Recommendation

Status

Informative findings

B01: Missing check that permit spender has the BURNER_ROLE

Recommendation

Status

B02: No restrictions on which addresses can be blocked or unblocked

Recommendation

B03: BLOCKED addresses can still perform critical operations

Recommendation

B04: A BLOCKED address can still perform some operations

Recommendation

1

Summary

Runtime Verification, Inc. has audited the smart contract source code for Membrane Finance

EUROe Stablecoin. The review was conducted from 2022-12-12 to 2022-12-16.

Membrane Finance engaged Runtime Verification in checking the security of their EUROe

Stablecoin project. EUROe is a euro stablecoin always redeemable for 1 EUR, it is fiat-backed

with liquid Euro denominated reserves held at European banks and financial institutions.

Furthermore, it is regulated as an e-money institution in Europe by the Finnish Financial

Supervisory Authority.

The issues which have been identified can be found in section Findings. Additional suggestions

can be found in section Informative findings. We also created a Foundry test-suite, which can be

found here.

Scope

The audited smart contract is:

● EUROe.sol

The audit has focused on the above smart contract, and has assumed correctness of the libraries

and external contracts they make use of. The libraries are widely used and assumed secure and

functionally correct.

The review focused mainly on the membranefi/euroe-stablecoin public code repository. The

code was frozen for review at commit 1409f41dd52dc45459502eda2e58aa7d8bc455d2. After

addressing a critical finding, the code was reviewed at commit

48681778aebfb11844c5c2f3ff2fa32df4f4c398.

Assumptions

The audit is based on the following assumptions and trust model.

1. All addresses that have been assigned a role need to be trusted for as long as they hold

that role. This roles include: BLOCKLISTER_ROLE, PAUSER_ROLE, UNPAUSER_ROLE,

MINTER_ROLE, RESCUER_ROLE, BURNER_ROLE and DEFAULT_ADMIN_ROLE.

2. The contracts are upgradeable. Thus, PROXYOWNER_ROLE, which has the power to

upgrade the contract, must be trusted, as they can significantly change the behavior of

the protocol.

These assumptions are documented in EUROe Developer Portal. Note they roughly

assume honesty and competence. However, we will rely less on competence, and point

2

https://runtimeverification.com/
https://github.com/membranefi/euroe-stablecoin-rv-audit/blob/rv-audit/test/EUROeTest.t.sol
https://github.com/membranefi/euroe-stablecoin/commit/1409f41dd52dc45459502eda2e58aa7d8bc455d2
https://github.com/membranefi/euroe-stablecoin/commit/48681778aebfb11844c5c2f3ff2fa32df4f4c398
https://dev.euroe.com/docs/Stablecoin/access-controls

out wherever possible how the contracts could better ensure that unintended mistakes

cannot happen.

Methodology

Although the manual code review cannot guarantee to find all possible security vulnerabilities as

mentioned in Disclaimer, we have used the following approaches to make our audit as thorough

as possible. First, we rigorously reasoned about the business logic of the contract, validating

security-critical properties to ensure the absence of loopholes in the business logic and/or

inconsistency between the logic and the implementation. Second, we carefully checked if the

code is vulnerable to known security issues and attack vectors. Thirdly, we developed a Foundry

test-suite with fuzzing tests to ensure the desired properties are holding. Finally, we participated

in meetings with the Membrane Finance team providing our feedback and suggested

development practices as well as design improvements.

This report describes the intended behavior and invariants of the contracts under review, and

then outlines issues we have found, both in the intended behavior and in the ways the code

differs from it. We also point out lesser concerns, deviations from best practice and any other

weaknesses we encounter. Finally, we also give an overview of the important security properties

we proved during the course of the review.

3

https://github.com/runtimeverification/verified-smart-contracts/wiki/List-of-Security-Vulnerabilities

Disclaimer

This report does not constitute legal or investment advice. The preparers of this report present

it as an informational exercise documenting the due diligence involved in the secure

development of the target contract only, and make no material claims or guarantees concerning

the contract's operation post-deployment. The preparers of this report assume no liability for

any and all potential consequences of the deployment or use of this contract.

Smart contracts are still a nascent software arena, and their deployment and public offering

carries substantial risk. This report makes no claims that its analysis is fully comprehensive,

and recommends always seeking multiple opinions and audits.

This report is also not comprehensive in scope, excluding a number of components critical to the

correct operation of this system.

The possibility of human error in the manual review process is very real, and we recommend

seeking multiple independent opinions on any claims which impact a large quantity of funds.

4

EUROe: Contract Description and Properties

This section describes the EUROe project at a high-level, and which invariants we expect it to

always respect at the end of a contract interaction.

Overview

EUROe Stablecoin is a euro-backed stablecoin project. It is mostly a standard ERC20 token with

few extra properties. In fact, the token follows the ERC20 token standard and implements all of

its functionality through the OpenZeppelin ERC20 implementation. The EUROe Stablecoin

defines multiple roles with differing levels of access and to restrict access to certain functionality

makes use of the OpenZeppelin role-based access control library. Below are the roles and which

functions they can interact with (for more detail, see here the various roles and their function on

the contract).

5

https://eips.ethereum.org/EIPS/eip-20
https://docs.openzeppelin.com/contracts/4.x/erc20
https://docs.openzeppelin.com/contracts/4.x/access-control#role-based-access-control
https://dev.euroe.com/docs/Stablecoin/architecture

Fig 1. Architecture Diagram from EUROe Developer Portal

The contract is upgradable to allow for future changes to the code, including, for example, new

features. Therefore, the contract is implemented through an EIP-1967 UUPS upgradable proxy.

This proxy is not by itself upgradeable, it is the role of the implementation to include all the code

necessary to update the implementation’s address that is stored at a specific slot in the proxy’s

storage. To achieve this EUROe makes use of the OpenZeppelin UUPS pattern library.

EUROe also supports EIP-2612 Permit Extension for EIP-20 Signed Approvals. So it is possible

for any user to give allowance to their tokens without a transaction by signing an OpenZeppelin

permit message.

As mentioned above, the EUROe Stablecoin defines multiple roles and some functionalities are

only accessible to a certain role. However, Fig 1 also shows the BLOCKED_ROLE which does not

intend to give access to some functionality, but instead to block some functionalities to

addresses assigned to that role. An address that has been assigned the BLOCKED_ROLE may

not: mint new EUROe, burn existing EUROe, receive EUROe or send EUROe.

Properties

There are several important properties that should be satisfied by the contract at all times. Here

will only be listed properties related to the contract under the audit - EUROe.sol. Properties

related to the use of external libraries are assumed to hold.

In the following, we list several properties that the contract should satisfy. These are not the only

ones, but they are fundamental for the correctness of the protocol and as such deserve special

attention.

P1 It should not be possible to initialize the contract twice

P2 The upgradeTo and upgradeToandCall function should only be accessible to an

address with PROXYOWNER_ROLE

P3 The pause function should only be accessible to an address with PAUSER_ROLE

P4 The pause function should prevent tokens to be minted, burned and token transfers

P5 The unpause function should only be accessible to an address with UNPAUSER_ROLE

P6 If the contract is unpaused then all the functionalities should be available

6

https://euroe-docs.vercel.app/docs/Stablecoin/architecture
https://docs.openzeppelin.com/contracts/4.x/api/proxy#ERC1967Proxy
https://docs.openzeppelin.com/contracts/4.x/api/proxy#UUPSUpgradeable
https://eips.ethereum.org/EIPS/eip-2612
https://docs.openzeppelin.com/contracts/4.x/api/token/erc20#ERC20Permit
https://docs.openzeppelin.com/contracts/4.x/api/token/erc20#ERC20Permit

P7 The burn, burnFrom and burnFromWithPermit functions should only be accessible to

an address with BURNER_ROLE

P8 The burnFromWithPermit functions should consume a permit and burn tokens based on

the permit

P9 The mint and mintSet functions should only be accessible to an address with

MINTER_ROLE

P10 The rescueERC20 function should only be accessible to an address with

RESCUER_ROLE

P11 Only the DEFAULT_ADMIN_ROLE can grantRole or revokeRole the following roles to

a given address: MINTER_ROLE, BURNER_ROLE, RESCUER_ROLE, PROXYOWNER_ROLE,

BLOCKLISTER_ROLE, PAUSER_ROLE and UNPAUSER_ROLE

P12 Only the BLOCKLISTER_ROLE can grantRole or revokeRole the BLOCKED_ROLE to

a given address

P13 An address with the BLOCKED_ROLE should not be able to send or receive tokens,

neither to mint or burn tokens.

7

Findings

A01: A blocked address can unblock itself

[Severity: High | Difficulty: Low | Category: Security]

The BLOCKLISTER_ROLE can assign the BLOCKED_ROLE to some address in order to prevent it

from sending or receiving tokens, to be minted new tokens or to burn tokens. This is achieved

through the modifier whenNotBlocked on the _beforeTokenTransfer function. However, a

blocked address can call the renounceRole function and get unblocked again. This would mean

that an address would be able to send and receive tokens again, or to be minted or burn tokens

again. This would violate P13.

function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles

for self");

_revokeRole(role, account);
}

Scenario

1. BLOCKLISTER_ROLE can assign the BLOCKED_ROLE to Alice

2. Alice calls renounceRole() and has no longer the BLOCKED_ROLE assigned to herself

3. Alice can send and receive tokens again, or to be minted new tokens or burn tokens

again.

Recommendation

Prevent an address assigned to BLOCKED_ROLE to call the renounceRole function.

Status

The client addressed the issue in commit 48681778aebfb11844c5c2f3ff2fa32df4f4c398 by making

the renounceRole function always revert. Now a BLOCKED address can only be removed from

BLOCKED_ROLE if the BLOCKLISTER calls the revokeRole for that address. Note that addresses

(controlled by Membrane) assigned to any other roles can still be removed to the role, but only

the ADMIN can do that.

8

Informative findings

B01: Missing check that permit spender has the

BURNER_ROLE

[Severity: - | Difficulty: - | Category: Input Validation]

When a permit signature is valid, the owner approves the spender to spend value amount of

tokens on its behalf. According to the documentation the function burnFromWithPermit is

supposed to consume a received permit signature and burn tokens based on the permit.

However, there is no check that the spender of the permit has the BURNER_ROLE, so it is possible

to consume a different permit and still be able to burn tokens (because prior allowance was

given).

This is not a security vulnerability but rather a mismatch between implementation and

specification and makes it harder for Membrane to keep track of the trail of approvals.

function burnFromWithPermit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s

) public onlyRole(BURNER_ROLE) {
super.permit(owner, spender, value, deadline, v, r, s);
super.burnFrom(owner, value);

}

Scenario

1. Alice signs a valid permit P giving allowance to address Bob to spend value x

2. Alice approves BURNER value x

3. BURNER calls burnFromwithPermit with Alice as owner, Bob as spender and permit P.

The super.permit invocation does not revert because the permit is valid. Consuming

the permit will give Bob approval to spend x tokens from Alice. The super.burnFrom

function will burn x amount of tokens from Alice because approval was also given to

BURNER.

9

Recommendation

Add a check that ensures that spender has the BURNER_ROLE:

require(hasRole(BURNER_ROLE, spender));

Status

The client addressed the issue. However instead of following the suggestion they require that the

spender is the msg.sender. This is a stronger requirement, because if there are two addresses

with the BURNER_ROLE, each one can only submit permits in which they are the spender.

10

B02: No restrictions on which addresses can be blocked or

unblocked

[Severity: - | Difficulty: - | Category: Input Validation]

BLOCKLISTER can block or unblock any address. Notice that BLOCKLISTER is owned by

Membrane Finance and according to the documentation:

“Addresses are not blocked arbitrarily; an address may only be blocked pursuant to the Access

Denial Policy, available at https://euroe.com/legal/access-denial-policy”

Nevertheless, it is possible for BLOCKLISTER to block address 0, and in that case it would make

the mint, mintSet, burn, burnFrom and burnFromWithPermit unavailable, since before all

transfers it is checked if both addresses involved in the transfer are not blocked. It is also

possible for BLOCKLISTER to unblock the contract address which is not desirable.

Recommendation

Either add a sanity check or document properly.

11

https://euroe.com/legal/access-denial-policy

B03: BLOCKED addresses can still perform critical operations

[Severity: - | Difficulty: - | Category: Documentation]

The following table presents which operations can privileged addresses still perform even if they

are blocked.

BLOCKED address with: Can perform:

DEFAULT_ADMIN_ROLE grantRole() and revokeRole()

PROXY_OWNER_ROLE upgradeTo() and UpgradeToAndCall()

PAUSER_ROLE pause()

UNPAUSER_ROLE unpause()

MINTER mint() and mintSet()

BURNER burnFrom() and burnFromwithPermit()

RESCUER rescueERC20()

This is not a security concern because these addresses are owned by the Membrane team, and in

case they get compromised for some reason, Membrane should revoke the role to the

compromised address, to remove their privileged access, instead of blocking it.

Recommendation

Document prominently.

12

B04: A BLOCKED address can still perform some operations

[Severity: - | Difficulty: - | Category: Documentation]

A BLOCKED address can still perform some operations that change the state of the contract, such

as: approve, permit and transferFrom between two addresses that are not its own. However,

this is not a security concern because the BLOCKED address still gets its funds locked.

Recommendation

Document prominently.

13

