
Membrane Finance

EUROe Concordium Contract Review
Version: 2.0

December, 2023

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 3Findings Summary . 3
Detailed Findings 4

Summary of Findings 5Missing Contract Schema In Init Function . 6Miscellaneous General Comments . 7
A Vulnerability Severity Classification 9

1

EUROe Concordium Contract Review Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the EUROe smart contracton the Concordium blockchain. The review focused solely on the security aspects of the Rust implementationof the solution, though general recommendations and informational comments are also provided.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgementson, or provides any security review, regarding the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of the functionality of the EUROe smart contract on the Concordiumblockchain within the scope of the security review.
A summary followed by a detailed review of the discovered vulnerabilities is then given which assigns eachvulnerability a severity rating (see Vulnerability Severity Classification), an open/closed/resolved status and a rec-ommendation. Findings which do not have direct security implications (but are potentially of interest) are markedas informational.
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the EUROe smart contract on the Concordium blockchain.

Overview

EUROe is an EU regulated, full-reserve euro stablecoin that brings fiat euro liquidity onchain.
The EUROe Concordium smart contract is a fully CIS-2 and CIS-3 compliant token implementing the core func-tionality, such as minting and burning and additional functionality for pausing, blocklisting and access controls.

Page | 2

EUROe Concordium Contract Review Security Assessment Summary

Security Assessment Summary

This reviewwas conducted on the files hosted on the euroe-stablecoin-concordium repository andwere assessedat commit f57df39. Retesting activities targeted commit 8c26692.
Note: external libraries and dependencies were excluded from the scope of this assessment.

The manual code review section of the report is focused on identifying any and all issues/vulnerabilities associ-ated with the business logic implementation of the solution. This includes their internal interactions, intendedfunctionality and correct implementation in Rust.
Additionally, the manual review process focused on all known Rust anti-patterns and attack vectors. Theseinclude, but are not limited to, the following vectors: error handling and wrapping, panicking macros, arithmeticerrors, UTF-8 strings handling, index out of bounds and resource exhaustion.
To support this review, the testing team used the following automated testing tools:

• cargo audit: https://crates.io/crates/cargo-audit
• cargo deny: https://github.com/EmbarkStudios/cargo-deny
• cargo tarpaulin: https://crates.io/crates/cargo-tarpaulin
• cargo geiger: https://github.com/rust-secure-code/cargo-geiger
• clippy: https://github.com/rust-lang/rust-clippy

Output for these automated tools is available upon request.

Findings Summary

The testing team identified a total of 2 issues during this assessment. Categorised by their severity:
• Informational: 2 issues.

Page | 3

https://github.com/membranefi/euroe-stablecoin-concordium
https://github.com/membranefi/euroe-stablecoin-concordium/commit/f57df392d6c82b7f91fe342866d93be121a4e3af
https://github.com/membranefi/euroe-stablecoin-concordium/commit/8c26692d88e78e5fd169eef994cdbb438cc86c25
https://crates.io/crates/cargo-audit
https://github.com/EmbarkStudios/cargo-deny
https://crates.io/crates/cargo-tarpaulin
https://github.com/rust-secure-code/cargo-geiger
https://github.com/rust-lang/rust-clippy

EUROe Concordium Contract Review Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the EUROe smart contract onthe Concordium blockchain.
Each vulnerability has a severity classification which is determined from the likelihood and impact of each issueby the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 4

Summary of Findings

ID Description Severity Status
MEC-01 Missing Contract Schema In Init Function Informational Closed

MEC-02 Miscellaneous General Comments Informational Resolved

5

EUROe Concordium Contract Review Detailed Findings

MEC-01 Missing Contract Schema In Init Function
Asset src/lib.rs

Status Closed: See Recommendations
Rating Informational

Description

The init function contract_init() is missing the contract schema in the init derive macro.
The contract schema is a description of how to represent bytes in a more structured representation and it is used byexternal tools when displaying the return value of a receive function and for specifying parameters using a structuredrepresentation, such as JSON.
On line [523] of src/lib.rs, the event attribute specifying the contract schema is missing.

522 /// Initialize contract instance with no token types.
#[init(contract = "euroe_stablecoin")] // @SigP: Missing event attribute

524 fn contract_init<S: HasStateApi>(
ctx: &impl HasInitContext,

526 state_builder: &mut StateBuilder<S>,
) -> InitResult<State<S>> {

528 // Construct the initial contract state.
let invoker: Address = Address::Account(ctx.init_origin());

530 Ok(State::empty(state_builder, invoker))
}

Recommendations

Use the SchemaType of the Event enum in the event attribute of the init derive macro to specify the contractschema.

Recommendations

The issue has been acknowledged and they have provided the following comments.
No change is implemented as this is a one-time function call.

Page | 6

EUROe Concordium Contract Review Detailed Findings

MEC-02 Miscellaneous General Comments
Asset src/*

Status Resolved: See Resolution
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:

1. Migrate contracts for concordium-std 8.1.
The new version of the standard library reduces the need for generics and traits in the init and receive methodsas described in the documentation.

2. Unused State.token field.
The State.token field is not used and can be removed to reduce contract size.

3. Unnecessary use of ContractTokenId .
Use of ContractTokenId can be removed from State.token_balance and AddressState.balances since it doesnot provide any functionality, reducing contract size and usage costs.

4. Blocklisting of the smart contract address.
Blocklist the smart contract address to prevent any tokens from being transferred by mistake.

5. Unnecesary mutable attribute.
The contract_view_message_hash() function does not modify the state and does not need the mutable at-tribute.

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The development team have acknowledged these findings, addressing them where appropriate as follows:

1. Migrate contracts for concordium-std 8.1.
The issue has been acknowledged and they have provided the following comments.
In line with discussions with relevant core Concordium developers we have decided not to migrate the contracts.

2. Unused State.token field.
This issue has been fixed in commit 8c26692.

Page | 7

https://developer.concordium.software/en/mainnet/smart-contracts/guides/migrate-contracts.html#migrate-contracts-for-std-8-1
https://github.com/membranefi/euroe-stablecoin-concordium/commit/8c26692d88e78e5fd169eef994cdbb438cc86c25

EUROe Concordium Contract Review Detailed Findings

3. Unnecessary use of ContractTokenId .
The issue has been acknowledged and they have provided the following comments.
No change is implemented due to added complexity versus reference implementations provided by Concordium.

4. Blocklisting of the smart contract address.
The issue has been acknowledged and they have provided the following comments.
Membrane Finance Oy will blocklist the issuer after deployment.

5. Unnecesary mutable attribute.
This issue has been fixed in commit 8c26692.

Page | 8

https://github.com/membranefi/euroe-stablecoin-concordium/commit/8c26692d88e78e5fd169eef994cdbb438cc86c25

EUROe Concordium Contract Review Vulnerability Severity Classification

Appendix A Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

Page | 9

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Missing Contract Schema In Init Function
	Miscellaneous General Comments

	Vulnerability Severity Classification

